What are the advantages of gallium nitride chargers?


Jun 30, 2023

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net

Today, mobile phones have become an integral part of people’s daily lives and communication. The “battery-anxiety disorder” affects countless people and is seen everywhere. Many people get nervous when the battery on their phone is low. When the phone is plugged in to the charger it can be very quiet.Few people think about the best way to use chargers, even though we use them every day. Today, gallium-nitride cells are also very common. What is the gallium nitride tech?
1. What is Gallium Nitride (Galium Nitride)?
In this year’s market, gallium nitride has become a popular charging technology. This new technology is being hailed as the ideal charger for the future. GaN is a powerful material, but what exactly is it?
Gallium Nitride is a semiconductor material with large bandgaps. It has many characteristics, including high thermal conductivity. Early on, it was widely applied in new energy cars, rail transits, smart grids, semiconductor lighting, and new generation mobile communications. It is also known as the third generation semiconductor material. Due to its cost-effectiveness and technological advancement, gallium is used widely in consumer electronics. Chargers are one of these. The bandgap of gallium is wider, and gallium has a better conductivity. Chargers using gallium-nitride technology have a higher output efficiency under the same volume than standard chargers. Gallium nitride charging heads, for instance, can deliver more output power at a volume similar to that of an Apple 5W charger.
The birth of gallium-nitride as a new semiconductor is like thunder in the earth. With its advantages, the technological revolution has spread rapidly to 5g, fast charging, RF, and other markets.
2. What are the advantages to the GaN chargers
Small volume
Gallium nitride, a new material for semiconductors that can be used to replace silicon and germanium, is an alternative. From 5v1a to 65W the power of the chargers has increased. While the volume is still acceptable, the long-term relationship between power and size is not harmonious. As a result of fast charging, there is also a problem with heating. The switching frequency is improved but the losses are small. The high switching rate can reduce the size of the transformer and the capacitor. Therefore, the volume for the GaN-charging head will be smaller.
High power
GaN has a bandgap that is significantly higher than silicon’s, so it can conduct more current over time. GaN chips have a larger bandgap, meaning that they can conduct higher voltages over time. It is important to not only conserve electricity but also charge more quickly.
It is easier to adapt to hotter environments
GaN semiconductors have a higher thermal conductivity and a larger bandgap compared to the two previous generations. GaN can be used at temperatures over 200°C, is highly reliable, and minimizes the risk of overcharging.
3. Why do we still use the old charging technology?
Why are we still using old charging technologies when the technology of gallium nitride has proven to be so effective? Silicon components are manufactured in a well-established process and cost less than a single part. Because gallium nitride has only recently been commercialized, its production cost is higher than silicon.
Moreover, the actual experience is not very good. There is a lot more room for optimization. On the market, gallium-nitride batteries are at least 30 percent more expensive than regular chargers.
(aka. Technology Co. Ltd., a trusted global chemical supplier & manufacture with over 12 year’s experience in providing super-high-quality chemicals and nanomaterials. Gallium nitride produced by our company is of high purity and fine particle size. Contact us if you need to.