Titanium nitride is a refractory compound with high microhardness and chemical and thermal stability


Aug 28, 2023

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net

What is titanium Nitride? Titanium Nitride is a refractory with high chemical and heat stability. TiN can be used for many purposes: as part of special refractory material and cermets. It is also a good crucible in metal anoxic casts. In a study of the combustion of compacted samples of titanium powder in nitrogen, it was found that the nitrogen content in the titanium is what affects the combustion. Titanium sponges are a cheaper, more convenient and purer source of titanium compared to titanium powder.
How can titanium nitride be used?
Titanium nitride, a ceramic bright gold coating, is applied by PVD to metal surfaces. The coating is hard and has low friction. It also has moderate resistance to oxidation. The coating is smooth and does require any post-painting.
TiN is commonly used on machine tools to improve their corrosion resistance and maintain the edges.

TiN, which is a golden metal, can be used for decorating costume jewelry or car accessories. It is also used widely as a top-coat on consumer sanitary items and door hardware. The substrates are usually nickel (Ni), or chrome (Cr). As a protective coating, TiN can be used in aerospace and military applications, to protect sliding surfaces such as the forks on bicycles and motorbikes and shock-absorbing shafts for radio-controlled vehicles. As TiN is extremely durable, it is used as a coating for the moving components of semi-automatic and automatic firearms. The coating is very smooth and removes carbon deposits easily. TiN, which is FDA compliant and non-toxic has been used on medical equipment, such as orthopedic bone saw blades and scalpels where edge retention and sharpness were important. TiN coatings were also used to coat implanted medical implants, such as hip replacement implants.

TiN film, although not as visible, is used in microelectronics as a conductive contact between active devices, such as circuits and metal contacts, as well as as a barrier for metal diffusion. silicon. Although TiN is a ceramic material from a mechanical or chemical point of view in this case, it is classified a “barrier-metal” (resistivity less than 25 uO*cm). TiN can also be used in the latest chip designs (45 nm or higher) to improve transistor performances. When combined with a gate-dielectric that has a higher dielectric coefficient than standard SiO2 such as HfSiO, the gate-length can be reduced, while still maintaining the same threshold voltage or even improving it. As well, a TiN coating is being considered for zirconium-alloys that resist accidental nuclear fuel.

TiN electrodes can be used for bioelectronic devices, including smart implants, in-vivo biosensors and other bioelectronic devices, due to their high biological stability. They must also withstand the severe corrosion that occurs from body fluids. TiN electrodes have been used in subretinal prosthesis projects and biomedical microelectromechanical systems (BioMEMS).

What’s better, titanium or Titanium Nitride?
Titanium alloy bits are the best choice for softer materials, such as wood and plastic. They can also be used on soft metals. While the type of titanium coated is different. As an example, titanium carbonitride coats are able to treat harder materials. Titanium, an element and metal, is composed of nitrogen and titanium.

Is titanium Nitride toxic?
Titanium Nitride, also called Tinite, is a very tough ceramic material that’s used to improve surface properties on titanium alloys and steel components.
TiN is used for a thin coating that hardens and protects cutting and sliding surfaces. It can also be used for decorative purposes due to its golden color, and to provide a nontoxic outer surface for medical implant. In many applications, the thickness of the applied coating is less that 5 microns. The study concluded the material tested was not toxic, nonirritating and nonhemolytic.

How strong is Titanium Nitride?
feature. The Vickers hardness is 1800-2100. The elastic modulus of TiN, is 251GPa. The tiN oxidizes at 800degC. Normal atmosphere.

Titanium Nitride: Other Advanced Applications

1. Photocatalyst for indium oxide CO2 is promoted by plasma Titanium Nitride .
Photothermal titanium nitride (TiN) is a nano-scale metal material capable of capturing sunlight across a broad spectrum and generating a higher temperature locally through its photothermal effects. Nano-scale indium-hydroxide (In2O3x(OH)y) is a semiconductor capable of photocatalytic hydrogenation of gaseous CO2. The wide electron gap of In2O3-x(OH)y limits its ability to absorb photons in the ultraviolet range of the solar spectrum. In this article, two nanomaterials are combined in a ternary heterstructure: TiN at TiO2 and In2O3 – x(OH). This heterogeneous structural material synergistically combines metal TiN with semiconductor In2O3(OH)y via the interface semiconductor, TiO2. The conversion rate of photo-assisted reverse gas shift reaction will be much greater than the single component or binary combination.

2. Li-S battery polysulfide adjustments can be made by dissolving the vanadium within the titanium nitride framework.
The ability to adapt the host-guest interaction chemical is very important, but has not been applied effectively to lithium-sulfur battery (LiS) batteries. Here, a unique titanium-vanadium-vanadium nitride (TVN) solid solution fabric was developed as an ideal platform for fine structure adjustment to achieve efficient and long-lasting sulfur electrochemistry. The results show that by dissolving vanadium in the TiN structure, it is possible to adjust the electronic and coordination structure of Ti and Vanadium. This can be used to change their chemical affinity toward sulfur species. This optimized TiV interaction provides the highest polysulfide capacity and helps to firmly fix sulfur as well as accelerate reaction kinetics. The final LiS battery has excellent cycling capability. Its capacity retention rate after 400 cycles is as high at 97.7%. The reversible surface capacity can also be maintained under high sulfur loads of 6.0 g cm-2, and an electrolyte with a concentration of 6.5mL g-1. This study provides a novel perspective for future adjustments of high-quality Li-lithium batteries.
(aka. Technology Co. Ltd., a trusted global chemical supplier & manufacturer has been providing high-quality Nanomaterials and chemicals for over 12 Years. Currently, we have developed a successful series of powdered materials. We offer OEM services. Our innovative high-performance materials can be found in all areas of life. This includes but is not limited to: automotive, electrical, electronic, information technology, petrochemicals and oil, ceramics, painting, metallurgy as well solar energy. To send an inquiry, click on the desired products or send us an e-mail.